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accuracy is available (perhaps from a few iterates of the power method); second, 
when an over-estimate is preferred to an under-estimate; and third, when no further 
improvement of the eigenvector is contemplated. These conditions are found in 
the problem of computing the optimum successive over-relaxation parameter. 

No cases have been found for which o- gives a faster convergence rate than ,(a) 
for any reasonable value of a. Dangers of many kinds exist for slowly convergent 
problems but this particular one has not been observed. Furthermore, any increase 
in convergence rate gained by use of this method reduces the likelihood that the 
sequence (2a, 2b) and (3) will be terminated by a false convergence indication. 
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A Practical Application of Block Diagonally 
Dominant Matrices 

By H. S. Price 

Introduction. In this note the concept of block diagonally dominant matrices 
(see references [3], [4], [5]) is applied to a problem from electromagnetic theory. 
The actual problem considered here is to find the vector potential P(r, z), induced 
in a piecewise homogeneous, axially symmetric, infinite region Q, by a current loop 
of radius rt located at z - 0. Using MJaxwell's first two equations (see references 
[6], [7]), it can be shown that P(r, z) satisfies the following differential equation: 

(1) 1 d ( OP(r, z) + (k2( ) l P(r, z) 0 (r, z) E&U. 
r ar Or az r2 

The complex-valued function k2(r, z) is given by 

(2) k2 _ e(r, z)1u(r, Z)W2 - iM(r, z)oa(r, z)w = a(r, z) - i,3(r, z), 

where /u is the permeability, o- the conductivity, e the inductive capacity, and X 

is the angular frequency. At the source, for a current loop of radius rt whose plane 
is normal to the z-axis and whose center is located at the origin, we have 
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(3) V2P(r, z) - P(r, z) + k2(r, z)P(r, z) - -J (r = rt ; z = 0), 

where J* is the current density in the current loop, If we now assume that the 
source sees the region as homogeneous (which is a fairly good assumption for many 
practical cases), we can solve equation (3) for P(r, z) along the line r = rt, giving 

(4) P (rt , z) -f (z) 

Also, since P(r, z) -+ 0 as r, z -a 0, we can choose a Zb and an rb so large that very 
little error is introduced by assuming 

P(rb, Z) 0, 

('I) P(r, Zb) 0- 

Then equations (4) and (5) along with (1) gives us the following behavior equa- 
tions, 

1 "' a2P(2Z) krZ) Prz 2 r E 
(6a) - r ( aP(?rZ + r, z) )= 
( 6ab) rd r (r Z) ) + (-2r z) - P z 0, (r, z) G , 

(6b) PP(r, z) =f(r, z), (r, z) Xr, 

where r is the boundary of Q and Q is defined as all r and z such that 

(7) O < rt < r < rb and O < Z < Zb. 

If the behavior equations (6) above are separated into real and imaginary 
parts and then approximated in the usual way (see [?, pp. 181-187]) the following 
matrix equation arises, 

(8) N - = s. 

The 2n X 2n matrix N is not diagonally dominant in the usual sense, but we shall 
prove that it is block diagonally dominant for a certain partitioning. 

Difference Approximation. If 

P(r, z) = Pi(r, z) + iP2(., z), 

we obtain, by separating equation (6a) into real and imaginary parts, 

1 a / aP( Z)\ a2Pi (r, Z) _11 
(10a) d + d y-)(_a(r,z) !P(r, z) = -f(rz)P2(6 Z), 

aP2(rz) 
OZ2 

(. 2 _______ a2P2(Or, Z _ 

(lOb) - d + aZ2 - (I, P2()) Yz) =f(r'z)F() 

If the n X n matrix A = (a,,,) is the discrete approximation to the operator 

(11) 2 = _ _ 

obtained by integration (see [2, p. 166]) and uij and vi j are the mesh approxi- 
mations to Pi(ri, zj) and P2(r'i, zj), respectively, then (10) becomes 
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ij+1 

Az. 

i-l,j i,j i+l,j 

Ar.l ari 

i, j-i 
FInGURE 1 

(12a) (Au)i,j + ( -ai.;) (Eu),,j = ,, (Ev)i,, 1 ? i _ I 1 : j c J, 

(12b) (Av)i,j + ( s-ai.i) (Lv),, = -aj (Eu)i, i 

where (Au) ,j and (Eu)i,j are defined at the i,jth mesh point by 

(Au) ij = zj ) - ri+ 2?'2-1/2) + (j) (r~+112 - ri-1/2) 

+ (uij 
- 

Ul)(r,-1/2) (AZj + AZj-1) 

(1 i I, 1 <j J) 

(13b) (Eu)i, = (ri+1/2 - 'i-1/2) ( 2Z + A l) uj. 

(See Figure 1.) 
Since with the assumptions stated in the introduction we have just the Dirich- 

let problem (equation (6b)), equations (12) and (13) are a difference approxima- 
tion for equations (6). 

Block Diagonal Dominance. Fromn now on. we will assume that 

(14) 1lj _ 
1 

7 1 < z 6 I, 1 _ j < J. 

since this is the case that leads to an application of block diagonally dominant 
matrices. This assumption is valid for many interesting physical problems since, 
for a good conductor (see [71), a-/we >> 1 and k can be written as 

(15) k - (1 + i) (w/.w) "'. 

This implies that k2 is pure imaginary or, in other words, a(r, z) 0 in (2). 
We now define D = (dkk) and F = (fkk) to be n X n diagonal matrices, where 
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(16a) (DuXi, = (+2 -aii) (r+1/2 it-1/2) ( 2 - 2Zi) u 

1 < i < I, 1 < j < J, 

and 

(16b) (Fui,; = (ijri+1/2 - ri-_/2) 2 (i-i) 

at the i, jth mesh point. 
Now, with these definitions, the discrete approximations to (10) in matrix 

notation become 

(17a) Au + Du = Fv, 

(17b) Av + Dv = -Fu 

or, defining M A + D, then the matrix equation to be solved is 

(18) N4= S) 
where 

M -F u 
(19) N=[ fl, [= ] 

and S is the vector arising from the boundary conditions. 
We will now permute the matrix N so that the equation for the real part of P, 

(u), at a given mesh point, is followed by the equation for the imaginary part of 

P, (v), at the same point. The matrix then has the form: 

A1,1 A1,2 0 * . 0 A1,1+1 0 * 0 

A2,1 A2,2 A2,3 0 ... 0 A2,1+2 0 

0 .. 0 

. ~~An-r,n 

(20) N= 0 0 

A1+1,, 

O~ ~ O 

An-1,n 

l ... 0 Anen-1 0 0 0 Anen-1 Anan 

where 
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Ak, k = [(ak,k + dkk) (akk + dk~k) 

_ fk, - fkk j 

(21) Akk+l [ ak2k ] = Ak+l,k and 
0 - ak,k+l_ 

F-as- I+k ?] 
A k I+k = L 0 - =A I+kk. 

O - ak, sk_ 

Now, from equation (13a), 
n 

(22) Iak > 
/kJ (22j 1 ~~~~~ak, k |- E I ak.,j| 

j==1 ;jik 

with strict inequality holding for the equations of each point adjacent to the bound- 
ary. Notice that if dk,k 0 for 1 _ k < n, with certain choices of the fk,k we can 
have 

n 

(23) akkA < E I ak j + I fl,-*k 1 _ k< n, 
ji1;j6k 

so N is definitely not diagonally dominant in the usual sense. However, following 
[3], we define block diagonally dominant matrices as follows: 

Al,1, A, 2 ... Al, 

(24) A= A2,I A2,2 A2, n 

An, 1 An, 2 . . . An, n 

DEFINITION 1. Let the 2n X 2n matrix A be partitioned as in (24). If the 
diagonal submatrices Aj j are nonsingular, and if 

(25) (IfA-j I)-J' > O Ajrk for all 1 ? j ? n, 
r= 1; r#j 

where 11 11 denotes the matrix norm subordinate to the ordinary Euclidean norm 
for vectors, then A is block diagonally dominant, relative to the partitioning (24). 
If strict inequality holds in (25) for 1 < j : n, then A is block strictly diagonally 
dominant and if A is block irreducible and strict inequality holds in (25) for at 
least one j then A is block irreducibly diagonally dominant. 

THEOREM 1. The matrix N given in (20) relative to the partitioning shown, is 
block irreducibly diagonally dominant and consequently is nonsingular. 

Proof. It is clear from the form of the 2 X 2 matrix Aj j in (21) that 

det(Aj j) = (aj, j + dj j)2 + fti 

and 

(26) (fl A-l f)' [det(Ajj)112 _ [(aj,. + djj)2 + fj2 j112 >I a__ 

The off-diagonal blocks of N are scalar matrices (i.e., diagonal matrices with 
equal diagonal entries), so 

n n 

(27) i fAji 1 -i I aj i 
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( 

FIGURE 2 

But now, combining equations (22), (26) and (27), we have 
n n 

(28) (11A II)' > I ajj I E aji |= Aji 11, 
X-1 ;itH -i1;i#j 

so from (25) of Definition 1, N is block diagonally dominant. Since the block irre- 
ducibility follows simply from looking at the block directed graph of N (see Figure 
2), N is block irreducibly diagonally dominant with strict inequality in (28) for 
all points adjacent to the boundary, Therefore by Theorem 1 of [3] N is nonsingular. 

LEMMA 1. N as partitioned in (20) is a consistently ordered 2-cyclic matrix. 
Proof. The block directed graph of type 2* of the block Jacobi matrix derived 

from N is given by Figure 2. 
Since every closed path is a multiple of 2 and has equal numbers of major and 

minor paths (see [2, p. 121]), N is a consistently ordered 2-cyclic matrix. 
LEMMA 2. The block Jacobi matrix B derived from N is convergent. 
Proof. B = I - Di'C, where N = Di - C and D1 is a block diagonal matrix 

with diagonal entries Ajsj. 
Since 

n n 
(29) Bi jl As j) ( , A ), 

and, from (28), 

(30) ( Axl |) E Aij -1) 

we have, finally, 
n 

(31) E Zl Bii 1l < 1 forall i. 
j=l 

Then, from Theoremii 2 of [3], if Xi is any eigenvalue of B, 
n 

(32) | s|< E IIBkj I I 
j=1 

* This terminology follows Varga [21. 
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but, since strict inequality holds in (28) for at least one i, Theorem 3 of [3] implies 
Xi I < 1, therefore, p(B) = supi Xi < 1 and B is convergent. 

The block Jacobi matrix B as given by 

(33) B = I - Di1C 

indicates that B2 does not necessarily have real positive eigenvalues, so finding an 
optimum acceleration parameter for successive overrelaxation is not an easy mat- 
ter. However, the following relationship between the eigenvalues X of the successive 
overrelaxation matrix and the eigenvalues it of the block Jacobi matrix still holds, 
i.e., 

(34) (X + -1)2 

This implies that the Gauss-Seidel method (i.e., co = 1) has twice the asymptotic 
rate of convergence as the Jacobi method and also indicates, by continuity, that 
for c near 1 the successive overrelaxation method will be convergent. Therefore 
experimenting with w's not equal to 1 is recommended. 

Conclusions. The problem described by equations (6) and approximated by 
equations (12) and (13) permits an interesting practical application of block diag- 
onally dominant matrices. Using this concept, we have proved convergence of 
certain iterative methods for solving the system of simultaneous equations of (18). 
Successive overrelaxation can be rigorously applied to solve the system of equations 
(18); however, no estimates of convergence rates were obtained. The extensions of 
this work to large block methods and the finding of an optimum acceleration param- 
eter are still open problems. 
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